谈国内外激光粒度仪技术现状及行业亟需解决的问题——珠海真理光学仪器有限公司董事长张福根
能不能制造出高水平的科学技术产品,关键点有三:一是产品的设计,二是供应链(配套原材料),三是制程管理。
在进入主题之前,我首先要澄清一下,这里的“激光粒度仪”是指基于静态光散射或衍射原理的粒度分析仪器, 测量范围从大约100纳米到几毫米。与之容易混淆的还有另一种也是以激光作为照明光源的粒度分析仪器——动态光散射粒度仪,在国内通常叫作纳米粒度分析仪。本文探讨的产品是指前者。
一提起高端的科学仪器,大多数国人都认为进口的国外仪器比国产仪器先进。但是,对激光粒度仪,我可以很负责任地说,总体上国产仪器与进口仪器水平相当,有些国产品牌甚至领先于世界同行。国外产品的价格确实高,但是技术性能一点都不高。所以,某些国家如果想在激光粒度仪上卡中国的脖子,不仅对中国的粒度仪应用产业丝毫无损,而且还会自行断送国外品牌在中国的市场,对中国的上下游产业高质量发展只有好处,没有坏处。
能不能制造出高水平的科学技术产品,关键点有三:一是产品的设计,二是供应链(配套原材料),三是制程管理。
就原料供应来说,国内国外的粒度仪厂商都是全球采购的,相互之间没什么差别。具体来说,集成电路和部分电子元件大多是国外生产的,机械零件和光学镜头大多是中国生产的,有些国外品牌甚至连整机都是在中国境内、由中国工人完成组装调试的。某些国产品牌为了宣传自己的粒度仪“高大上”,声称光学镜头是某发达国家生产的,不知真假?但愿是假的;如果是真的,那真要为之惋惜了。其实,国产光学镜头完全能满足激光粒度仪的使用需求。就连某些著名的进口品牌的镜头都是中国产的,说明国外同行早就认可中国镜头的质量。你又何必花高价到国外采购呢?要说卡脖子,电子元器件真是国产科学仪器“脆弱的要害部位”。激光粒度仪要用到的激光二极管,一些模拟集成电路,单片机等,都需要进口。但这不是我们激光粒度仪的厂商能够解决的。
至于制程管理,需要经验的积累和精益求精的态度。国产品牌或者其主要负责人,进入激光粒度仪行业都已超过20年,而且有些人曾长期在国外同行企业工作,再笨也学会该如何管理了,更何况中国人还是挺聪明的,至少不会在智力上输给西方人。对产品质量的态度,我认为几家主要的国产品牌都是很认真的。或许是激烈竞争的原因,大家都迫切地希望用户使用自己的产品时有良好的体验:精确、稳定、可靠。说到使用者真实的体验,我要提一句提外话:目前进口产品在售后服务上给用户的感觉都不太好:不仅服务不及时,态度不友好,而且收费巨贵。在这一点上,国外品牌就大大比不上国产品牌了。
粒度仪器有多种原理,但大多数都把被测量的颗粒看成一个理想的圆球。尽管实际的颗粒很少是理想圆球,有些甚至远远偏离圆球,但是由于颗粒的数量太大,形状也是千变万化,如果连形状都要考虑进去,是一件没办法完成的工作,所以只能把颗粒当作圆球来处理。激光粒度仪也是把颗粒当成理想圆球来处理,全世界的品牌都一样。
光是电磁波。在均匀的介质中,光是沿着直线传播的。如果光在传播的途中遇到一个颗粒,光和颗粒就会发生相互作用,光波一部分可能被颗粒吸收,一部分则偏离原来的方向继续传播,后者就称为“光的散射”。这种相互作用遵循电磁波理论,即麦克斯韦方程组。只要颗粒尺寸远大于原子尺度,并没原子激发辐射(荧光)现象发生,那么,电磁波理论的正确性是不容置疑的。平面电磁波遇到圆球颗粒后发生的散射现象,可以有严格的数学解,称作“Mie散射理论”。不过这个解在数学形式上很复杂、计算量庞大,物理意义很抽象。在颗粒直径远大于光波长时,散射现象可以用几何光学近似理论解释,这样物理意义就变得很直观了。
请看图1。在颗粒远大于光波长的情况下,颗粒对光的散射,可以分成两个部分:衍射和几何散射。从无限远(远场)的位置观察,衍射光的偏离角度只跟颗粒在观察面上的投影的大小有关,颗粒越小,衍射角越大,这部分信息可拿来分析颗粒的大小。几何散射光是指光线投射到颗粒表面以后,一部分发生反射,另一部分经过折射进入颗粒内部,又在另一个界面上发生折射(到介质)和反射的现象。散射光场是这两部分光的叠加。图1中只画出了衍射光和一次折射光。从远场看,几何散射光的相对强度分布与颗粒大小无关,只与颗粒的折射率与吸收系数有关。另外,当颗粒很大时,衍射光的分布范围远远小于几何散射光的分布范围,但是由于两种散射光的总能量相同,所以从小角度看,衍射光的强度要远大于几何散射光的强度。这也是在小角度范围内观察大颗粒的散射光时,可以只考虑衍射光的原因。
激光粒度仪在上世纪70年代初刚出现时,只考虑衍射光,所以颗粒可以看成一个不透光的圆片,见图2。根据光学上著名的巴比涅互补原理,一个不透光的圆片所产生的衍射场与同直径的圆孔所产生的衍射场只在位相上差180°,振幅则完全相同。激光粒度仪直接测量的是光强的分布,它是振幅的模的平方,跟位相没关系,所以一个直径为D的颗粒所产生的衍射光强的分布可以用等直径的圆孔产生的光强分布来代替。
圆孔的衍射在19世纪末就有解析形式的理论表达。远场的衍射理论称为“夫朗和费衍射理论”。图2还表示出了观察远场衍射的经典装置:在圆孔后放置一个光学透镜,在透镜的焦平面上放置观察屏,这样在屏上看到的图像就是远场衍射光斑。衍射角度为的衍射光落在屏上的位置到屏的中心的距离为( 是透镜的焦距)。顺便科普一个光学名词:如果透镜是对焦平面消像差的,该透镜就称为“傅里叶透镜”。
从图2能够正常的看到,远场的衍射光斑由中心亮斑和一系列同心圆环组成,被称为“爱里斑”。理论上可以证明,爱里斑的第一个暗环内包含了大约84%的衍射总光能,所以习惯上把第一个暗环所对应的衍射角称为爱里斑的(角)半径。爱里斑的半径与圆孔直径、也就是颗粒的直径近似成反比,因此屏上的光强分布与颗粒大小之间有一一对应关系。激光粒度仪就是根据这个原理分析颗粒大小的。
一个10微米的颗粒,如果用0.633微米(红光he-Ne激光波长)的光去照射,那么衍射角就是4.4°;100微米的颗粒,衍射角就是0.44°了。世界上第一台激光粒度仪直到1970年前后(准确的年份有几种说法)才出现,主要是因为它第一步是要一种单色性、方向性都足够高、强度足够强的光源,这就是激光。所以它只能出现在激光器问世(1961年)之后。另外,探测衍射光场的分布需要硅光电探测器阵列,要使用到集成电路制作流程与工艺;把衍射光的分布转换成粒度分布需要台式计算机,这些条件都是1960年以后才出现的。
国内最早开始激光粒度仪研制的是天津大学的张以谟团队,当时是承接了国家科委的六五(1981年到1985年)科技攻关项目。项目于1989年通过了国家科委的技术鉴定。产品的名字当时叫做“激光滴谱仪”,设定的应用对象是液体雾滴的粒度测量。比天津大学略晚开展激光粒度仪研制的单位还有上海机械学院(后改名“上海理工大学”)、山东建材学院(后并入济南大学)、四川省轻工业研究院、重庆大学和辽宁(丹东)仪器仪表研究所。
从上面的介绍能够准确的看出,国产激光粒度仪的出现时间比世界上最早的同种类型的产品晚了大约20年。早期国产仪器的落后,首先就是因为起步的时间晚。起步晚的原因有这么几个:(1)国外开始研发激光粒度仪的时间正好是中国的文革时期,闭关锁国,国内的科研人员不太了解国外的动态,一直到1970年代末改革开放后,国外的产品卖到中国,以及国内的科研人员到国外进修,才知道有这么一种产品。(2)激光粒度仪的应用对象是从事粉体、浆料、乳液、胶体以及喷雾的科研和生产单位,当时中国在生产和科研两个方面都大幅落后于国外。国内的应用需求对该产品的研发的拉动不强烈。(3)在改革开放前以及改革开放后的很长一段时间,科研由高校和研究机构做,而生产由工厂做。科研单位感受不到应用的需求,而生产单位即使知道有需求,也没有能力设计一款光、机、电和计算机一体化的产品。(4)激光粒度仪作为当时的高精尖产品,需要激光器、电脑、形硅光电池阵列、半导体芯片等元器件和设备的配套,在上世纪六、七十年代,中国很难获得这些东西。
但是如果想把粒度测量下限扩展到接近或小于光的波长,那么就必须考虑更大角度范围的散射光了。现在的粒度仪测量下限能够达到光波长的1/10左右。图3表示出几种亚微米颗粒的散射光强分布。从图上能够准确的看出,对小颗粒来说,不同粒径散射光强度分布的差别,主要在大角度上,甚至大到180°。这就需要仪器的光学系统能测量0°到180°全角范围的散射光,光学模型也必须用Mie散射理论了。
目前国内国外的厂商,大多数采用复杂但严谨的Mie理论,但也有个别国外厂商还在用衍射理论。从所采用的光学模型来看,国内厂商与国外的主流厂商是同步的。相反,个别国外厂商还在用夫朗和费衍射理论,就显得抱残守缺了。
国内厂商——珠海真理光学仪器有限公司与天津大学的联合团队发现了造成这个困惑的根源:爱里斑的反常变化(ACAD)。通常我们都认为颗粒越小,爱里斑越大,于是颗粒大小与爱里斑大小之间有一一对应关系,所以粒度仪可以依据散射光的分布推算粒度分布。但事实上在有的粒径区间,会出现违反上述规律的情况:颗粒越小,爱里斑也越小。我们把这样的粒径区间叫做“反常区”。图4是根据Mie散射理论用数值计算的方法模拟出的聚苯乙烯微球的爱里斑的变化。图中粒径从3微米到3.5微米的爱里斑尺寸的变化就属于反常变化。对聚苯乙烯微球来说,3微米左右正好是在反常区,所以测量出现异常。研究论文发表于2017年。
该研究揭示出,任何无吸收或弱吸收的颗粒的光散射都存在反常现象。如果颗粒无吸收,则存在无限多个反常区。对粒度测量有影响的主要是第一反常区,其所处的粒径区间大约在0.5微米到10微米,具置跟颗粒与分散介质的折射率以及光波长有关。颗粒折射率越大,反常区中心对应的粒径越小。被测颗粒的粒径落在第一个反常区的话,通常的反演算法就难以根据散射光的分布计算出正确的粒度分布。反常现象对激光粒度测量的影响是都会存在的,这将在第3节继续讨论。
爱里斑反常变化现象的发现与研究,是国内厂商与研究机构对激光粒度测试技术的创造性贡献,当然是全球范围内独一无二的,是领先于世界的。
亚微米颗粒的散射光能分布见图5,其中假设了探测器的面积与散射角成正比,照明光是线偏振光,偏振方向垂直于散射面。其中图(a)表示全角范围内完整的散射光能分布。从中能够准确的看出,垂直偏振散射光是分布在0°到180°的全角范围内的,对0.3微米以细的颗粒来说,散射光能的主峰分布处在40°到90°的前向大角度上。由于光能分布的主峰位置(如果有)与粒径之间有最显著的特异性,因此获取40°以上的散射光信息对亚微米颗粒测量至关重要。
图6是当前国内外比较有一定的影响力的几种品牌的激光粒度仪的散射光接收系统的光路图。其中图 (a)称为经典光路,又称正傅里叶变化光路。是激光粒度仪发展的早期就开始采用的光路。其特点是用平行激光束垂直入射到测量窗(池),相同角度的散射光通过傅里叶镜头后被聚焦到探测器的一个点上。其缺点是系统能接收的最大散射角受傅里叶镜头的孔径限制。目前能达到的最大孔径角是45°。如果颗粒分散在水介质中,那么对应的最大散射角是32°。这样的系统能测量的最小粒径约为0.4微米。
图6(b)是一种逆(反)傅里叶变换系统。它用会聚光垂直照射到测量池。在小散射角上也能会聚同角度的散射光。但是大角度的聚焦不良,不过可以在光学模型的数值计算上对此进行补偿,并不影响对散射光分布的测量。它的好处是最大接收角不受透镜孔径限制。空气中的最大接收角可达60°或更大,对应于水介质中的散射角为41°以上。如果前向散射角继续增大,大于49°时,就会受到全反射规律的约束,无法出射到空气中,该以上角度称为“全反射盲区”。盲区内的散射光也就无法被探测器接收。这将丢失0.3微米及以细颗粒的散射光能主峰信息,见图5(b)。这种系统一般还设置后向探测器,能接收大于139°的散射光。对0.1左右的颗粒测量有帮助。
图6(c)是一种是多光束方案,是为突破全反射的限制而专门设计的。它用一束光作为主光束,正入射到测量池,用另外一束或两束光作为辅助光束,斜入射到测量池。如果设置后向探测器,则只需一束辅助光。。通常,为了尽量扩大仪器的测量范围,主光束用红色激光,而辅助光束用蓝色LED光源。假设辅助光的对测量池的入射角为45°,那么在该辅助光的配合下,测量盲区能减小32°。如果只有主光束时散射角测量上限为41°,那么现在的测量上限可达73°。但是它的缺点是,主光束照明情况下的散射光测量和辅助光照明下的测量(如果两束辅助光,也要分别测量)必须分开进行,两次测量的数据拼接,不是一件容易做好的事情。如果辅助光和主光用不同的波长,还需要同时获取两种波长所对应的折射率。有时要得到一种波长的折射率都有困难,两种更难了。
图6(d)称为偏振光强度差(PIDS)方案(该图取自许人良博士未出版的书稿)。其特征是除了正入射的主光束以及配套的双镜头散射光接收系统外,另外串联了一个测量池,并在照明光行进路径的侧面设置对应不同散射角的探测系统。利用90°散射角周围垂直偏振的散射光与平行偏振的散射光的分布差异,分析亚微米颗粒的大小。存在的问题是:(1)主光束获得的信息与PIDS窗口获得的信息之间如何拼接?(2)PIDS测量利用了多种波长的照明光,要想获得多种波长的折射率是十分艰难的。
图6(e)称为“斜置平行窗口”方案或“照明光斜入射”方案。作者最早于2010年提出该方案(专利)。它的优点是用一束照明光就可以突破全反射的限制,却没有多光束方案的数据拼接难题。比如说斜置20,被接收的最大散射角就能增加到60°。但是要完全消除全反射的影响,必须斜置70°。此时入射光在探测平面上不能良好聚焦,进而影响了大颗粒的测量。这是作者没有在真理光学的产品中采用这种方案的原因,但有其他国产品牌在用这种方案。
图6(f)是真理光学在用的“斜置梯形窗口”光学系统。它只需一束照明光。测量池整体倾斜10°,不影响入射光的聚焦,测量池右侧的玻璃做成梯形,让接近或大于全反射临界角的散射光从梯形的斜面出射。这种方案能让前向最大散射角达到80°,使系统能够接收所有亚微米颗粒的散射光能分布的主峰信息,见图5(c)。这是目前前向散射接收角最大的光学系统,而且还只用了一束照明光,没有数据拼接问题。是一种世界领先的方案。
各厂商的算法是技术秘密,外人无从知晓与评价。但是能确定的是,若条件(A)和(B)有缺失,一定会影响最终的粒度分布结果。从第2节的叙述我们已看到,现有的各种散射光的接收方案都不能百分之百获得0到180°的散射光信息,但是有的方案好一些,比如图6(f)的方案;有的则有较大的信息缺口,比如图6(a)和(b)所示的方案。作者在第1节中谈到过,真理光学团队发现的爱里斑的反常变化,将导致在被测颗粒是透明的条件下,对于粒径落在第1反常区内的颗粒,条件(B)不能满足。
相对来说,国产的真理光学做得比较好。对条件(A),前向最大散射角(介质中)的接收能力达到80°,能捕获所有颗粒的光能分布主峰,并且只用一束照明光,避免了不同照明光的数据拼接。对条件(B),基于对爱里斑反常变化的原创发现和规律的深入研究,通过软硬件的结合,基本上解决了爱里斑反常变化对粒度分析的影响。
图7是该仪器的实测案例。图7(a)是标称D50为150纳米的聚苯乙烯微球标样的测量结果。选“通用”模式时,D50为121纳米,与样品标称值相差较远,且分布曲线明显展宽;选”单峰窄分布”模式时,D50为148纳米,与样品标称值相符。图7(b)是标称D50为3微米的标样的测量结果。选“通用”模式时,结果呈现多峰,与样品的单分散特征完全不符;选“单峰窄分布”模式时,与样品形态特征及标称值相符。图7(c) 是一个人工配制的3个峰的SiO2微球。选“通用”模式时,结果只有1个峰,完全失真;选“多峰窄分布”模式时,曲线个峰,结果比“通用”模式接近真实,但还是有失真。
从使用经验看,该仪器在测量颗粒标准样品时只能用“单峰窄分布”模式去分析。因为颗粒标准物质就是单峰窄分布的,所以这样的做法颇有“量身定做”的意味。如果用 “通用”模式分析标准微球时,则经常出错。人们难免要问:“通用”模式连最容易测量的颗粒标准物质都给不出正确的结果,如何保证一般样品的测量结果是正确的?还有一个疑问是:一种仪器的不同模式给出不同的结果,究竟哪一个是正确的结果?
上述问题假如没有合理的解答,那么从基本的科学逻辑出发,我们就能得出这样的结论:一种仪器有多种分析模式是仪器性能不完善的表现。国产的真理光学的仪器就绝对没这样的问题。它只有一个统一的反演模式,不论测什么样品,都用同样的算法。图8是上述3个样品用国产真理光学仪器测量的结果:150纳米和3微米标样的D50值和分布形态全部符合预期,实际样品的3个峰也能得到正确的体现。
爱里斑的反常变化会导致一种散射光能分布对应多种粒度分布的可能性,从而使粒度仪得不到正确的粒度分布结果。图7(b)所示的3微米标样在某国外仪器“通用”模式下给出的完全失线微米标样的构成材料是聚苯乙烯微球,这个粒径正好处在这样一种材料颗粒的第1个反常区。该国外仪器没能解决这一个问题,所以在“通用”模式下得不到正确结果,而只能选用“单峰窄分布”这种量身定做的模式进行“特殊处理”。如果是普通的待测样品,由于事先无法知道被测颗粒的粒度分布特征,不知道怎么来去“特殊”,就难以给出正确的结果。
目前除了真理光学以外,国内外的激光粒度仪厂家的通行做法是,在计算散射矩阵(光学模型)时,即使被测颗粒是透明的,也要人为加一个吸收系数,最常见的数值是0.1。这样在光学模型中就不会出现反常现象,从而使反演结果稳定,或者看上去比较正常。问题就在于实际颗粒是无吸收的,人为加吸收必然使测量结果失线是一个碳酸钙样品的粒度测量结果。该样品经过沉降法的分离,去除了2微米以细的颗粒(可通过显微镜验证)。碳酸钙的折射率是1.69,无吸收。图9(a)是真理光学仪器的测量结果,2微米以细的颗粒含量几乎为零,与预期的一致。图9(b)是在光学模型中加了0.1的吸收系数后的反演结果:在2微米后拖了一个长长的尾巴。我们大家都知道真实的粒度分布中,这个尾巴是不存在的,这是人为加吸收系数所引起的错误结果。有些国外仪器为了尽最大可能避免假尾巴的出现,人为地在1到3微米之间减去特殊的比例的颗粒含量。这种人为主观的处理会引起新的不良后果:如果在该粒径区域真实存在颗粒,也会被人为减少其含量甚至清零。图8(c)所示的SiO
(a)实际的粒度分布 (b)光学模型中加0.1吸收系数后得到的结果
3.4 国内外激光粒度仪对亚微米颗粒的测量能力的比较采用图6(b)所示的散射光接收系统的仪器是国外品牌,在中国占有很可观的市场占有率。然而这种结构由于丢失了0.3微米以细颗粒的光能分布主峰的信息(见图5(b)),从而注定了难以很好地测量0.3微米以细的实际样品(有别于标样,因此通常都用“通用”模式)。
图10是某进口仪器和国产真理光学仪器测量纳米硅碳颗粒样品结果的比较。图10(a)是国外仪器的结果,图10(b)是真理光学的测量结果。两张图中的上图是粒度分布,下图是拟合光能分布与实测光能分布的对比。比较两种结果,可判断真理光学的结果更真实、可靠。理由是:
(A)真理光学的结果拟合残差只有0.43%,而进口仪器的拟合残差高达5.25%。前者拟合更好。
(B)真理光学给出的粒度分布曲线是单峰的,而进口仪器的结果是多峰的。经验告诉我们,正常制造出来的样品极少出现多峰的情况.
(C)从光能拟合曲线单元后测量值(绿线)和拟合值(红线)之间出现较大的偏离,而国产仪器的两条曲线非常一致。
4. 激光粒度仪行业的未来发展问题前面三节从激光粒度仪的光学模型、散射光接收系统和反演算法及实际测量能力等三项硬核技术方面对比了国内外激光粒度仪的技术水平和测试性能,表明国产激光粒度仪不会逊色于国外同种类型的产品。真理光学团队发现的爱里斑反常变化现象及规律、独创的斜置梯形窗口克服前向超大角测量盲区以及统一的反演算法等技术,则领先于世界同行。但是,对于激光粒度仪整个行业来说,还存在需要改进甚至急需改进的地方。我的建议如下:
目前,全世界内激光粒度仪测量实际样品时给出的数据经常是不可比的。对同一颗粒样品,不一样的品牌的仪器的测量结果不可比;同一厂家生产的仪器,不相同的型号之间的结果不可比;更绝的是同一台仪器不同反演模式给出的结果也不可比。到目前为止,对这三个“不可比”,都没有人拿出令人信服的、符合科学的解释。
作者尝试分析一下原因。从理论上说,大家测量相同的样品,使用相同原理的仪器,应该得到相同的结果(在合理的误差范围内)。两个结果如有不同,那么至少有一个结果是错的,甚至两个结果都是错的。这就说明当前国内外的各种激光粒度仪还存在不完善的地方。这些不完善包括:(A)光散射模型上,有的仪器还在使用夫朗和费衍射理论;(B)光的全反射现象的制约,或者大角与小角散射光数据拼接的困难,导致有的仪器没获得或者没有准确获得大角散光的信息,影响了0.3微米以细颗粒测量的准确性;(C)爱里斑的反常变化引起粒径与散射光分布之间一一对应关系的破坏,除了真理光学,另外的品牌都采用人为地在光学模型中给颗粒添加吸收系数的方法来敷衍性地解决,但是没有真正解决,导致结果失真;(D)一种仪器有多种反演算法,从逻辑上就可断定这样的算法是不完善的,而根据作者分析,这个不完善又和不完善点(B)和(C)有关。(E)仪器厂商为了迎合客户的偏好,对原始的粒度分析结果进行了失实的修饰,比如把多峰分布改为单峰分布,把粒度分布中粗、细方向的展宽改窄等等。
国内很多用户都认为进口仪器就是比国产仪器好。国内用户要是遇到进口仪器的测量结果与国产仪器数据不一致的情况,第一反应就是国产仪器错了。我在前面分析过,进口仪器不比国产仪器好,请用户客观判断。
另一方面,国内有的仪器厂家也拿自己的仪器结果能和国外的结果相一致,来验证自己的高水平。这是自我矮化行为,当然也表明该厂家对自己制造的仪器没有信心。但是国内厂家的这种行为会助长用户原本就有的认为国产仪器水平低的心理。
激光粒度测试报告的核心内容是体积粒度分布。形式上可以是表格或者曲线。有时为简洁起见,用特征粒径来表示粒度分布。最常见的是D10、D50和D90三个数。其中D50表示样品颗粒的平均粒径(与之并行的也可用D[4,3])),而D10和D90分别表示粒度分布往小粒径和大粒径方向延伸的宽度。在大多数情况下,一个粉体样品的平均粒径和分布宽度(或者均匀性)确定了,其粒度特征也就基本确定了。
激光粒度仪国家标准(GB/T 19077-2016/ISO 13320:2009)中明确规定,不允许用D100的数值。这是因为从概率论分析,D100的数值是不稳定的,另外D100实际上并不意味着颗粒样品中的最大粒直径。如果把这个值作为最大粒,可能会
然而在有些激光粒度仪的应用行业,例如电池的正负极材料行业,其国家标准中就把激光粒度仪的Dmax(即D100)作为控制指标。该行业内上下游间的粒度控制指标中,不仅包含了D100,还包还可了D0和Dn10,这些都是误导性的应用。
光粒度仪的测量下限和上限被严重夸大的问题目前激光粒度仪的测量范围动辄下限10纳米,上限5000微米以上。这显然被严重夸大了。这会误导客户,扰乱市场。需要行业自律。国家相关组织也要加强督导的力度。相关仪器与技术,请点击:#激光粒度仪
说句实在话,也别太夸大了,国产的仪器除了质量要过硬之外,外观造型是否也得跟得上时代的步伐呢,有的真的是丑的一批,有时真不是仪器质量不行,是外观丑到爆炸,无法接受!
赞!这才是真正做仪器的人写的文章。 文中最后提到的一点在其他领域的仪器中也都会存在,国内外仪器都存在严重的内卷,测量范围被严重夸大,很多都是销售人员满嘴跑火车,但实际上根本没办法考核测量下限和上限。